Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.09.579628

ABSTRACT

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and causes local respiratory symptoms. It has been reported that HCoV-229E can cause cell death in a variety of cells in vitro. However, the molecular pathways that lead to virus-induced cell death remain poorly characterized. Here, we show that the main protease (Mpro) of HCoV-229E can cleave the pyroptosis executioner gasdermin D (GSDMD) within its active N-terminal domain at two different sites (Q29 and Q193) to generate fragments unable to cause pyroptosis. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection leads to lytic cell death. We further demonstrate that virus-induced lytic cell death is partially dependent on the activation of caspases-3 and -8. Interestingly, inhibition of caspases does not only reduce lytic cell death upon infection, but also sustains the release of virus particles over time, which suggests that caspase-mediated cell death is a mechanism to limit virus replication and spread. Finally, we show that pyroptosis is partially dependent on another gasdermin family member, gasdermin E (GSDME). During HCoV-229E infection, GSDME is cleaved to yield its N-terminal pore-forming domain (p30). Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus, whereas this is not the case for GSDMD knockout cells, which aligns with the observation that GSDMD is also inactivated by caspase-3 during infection. These results suggest that GSDMD is inactivated during HCoV-229E infection, and point to GSDME as an important player in the execution of virus-induced cell death.


Subject(s)
Respiratory Tract Infections , Hepatitis D , Coronaviridae Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.15.472838

ABSTRACT

Understanding the mechanisms and impact of booster vaccinations can facilitate decisions on vaccination programmes. This study shows that three doses of the same synthetic peptide vaccine eliciting an exclusive CD8+ T cell response against one SARS-CoV-2 Spike epitope protected all mice against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, while only a second vaccination with this T cell vaccine was insufficient to provide protection. The third vaccine dose of the single T cell epitope peptide resulted in superior generation of effector-memory T cells in the circulation and tissue-resident memory T (TRM) cells, and these tertiary vaccine-specific CD8+ T cells were characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping showed that a substantial fraction of the tertiary effector-memory CD8+ T cells developed from remigrated TRM cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8+ T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.


Subject(s)
Memory Disorders , Severe Acute Respiratory Syndrome , Addison Disease , COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-783703.v1

ABSTRACT

SARS-CoV-2 viral load is associated with disease severity. A better understanding of immunological mechanisms involved in viral clearance is crucial to guide new therapeutic strategies. Here, we studied the timing of viral clearance in relation to 122 immune parameters in 150 hospitalized COVID-19 patients. Delayed viral clearance was associated with more severe disease, which occurred after the virus had been cleared in most cases. Paradoxically, delayed viral clearance was associated with over time higher maximum levels of SARS-CoV-2 specific IgG, IgA, and neutralizing antibodies, increased numbers of eosinophils, monocytes, and pro-inflammatory cyto-/chemokines. In contrast, early viral clearance and less critical illness correlated with higher levels of CD4 + and CD8 + T cells. Collectively, our data show that absence of rapid T cell control corresponds with delayed clearance and aberrant antibody and cytokine profiles. Viral clearance often precedes critical illness, which suggests immunopathology as underlying mechanism. These data can guide treatment strategies.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.19.21255727

ABSTRACT

The immune system plays a major role in Coronavirus Disease 2019 (COVID-19) pathogenesis, viral clearance and protection against re-infection. Immune cell dynamics during COVID-19 have been extensively documented in peripheral blood, but remain elusive in the respiratory tract. We performed minimally-invasive nasal curettage and mass cytometry to characterize nasal immune cells of COVID-19 patients during and 5-6 weeks after hospitalization. Contrary to observations in blood, no general T cell depletion at the nasal mucosa could be detected. Instead, we observed increased numbers of nasal granulocytes, monocytes, CD11c+ NK cells and exhausted CD4+ T effector memory cells during acute COVID-19 compared to age-matched healthy controls. These pro-inflammatory responses were found associated with viral load, while neutrophils also negatively correlated with oxygen saturation levels. Cell numbers mostly normalized following convalescence, except for persisting CD127+ granulocytes and activated T cells, including CD38+ CD8+ tissue-resident memory T cells. Moreover, we identified SARS-CoV-2 specific CD8+ T cells in the nasal mucosa in convalescent patients. Thus, COVID-19 has both transient and long-term effects on the immune system in the upper airway.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.08.425915

ABSTRACT

Previously we have shown that a single dose of recombinant adenovirus serotype 26 (Ad26) vaccine expressing a prefusion stabilized SARS-CoV-2 spike antigen (Ad26.COV2.S) is immunogenic and provides protection in Syrian hamster and non-human primate SARS-CoV-2 infection models. Here, we investigated the immunogenicity, protective efficacy and potential for vaccine-associated enhanced respiratory disease (VAERD) mediated by Ad26.COV2.S in a moderate disease Syrian hamster challenge model, using the currently most prevalent G614 spike SARS-CoV-2 variant. Vaccine doses of 1x109 vp and 1x1010 vp elicited substantial neutralizing antibodies titers and completely protected over 80% of SARS-CoV-2 inoculated Syrian hamsters from lung infection and pneumonia but not upper respiratory tract infection. A second vaccine dose further increased neutralizing antibody titers which was associated with decreased infectious viral load in the upper respiratory tract after SARS-CoV-2 challenge. Suboptimal non-protective immune responses elicited by low-dose A26.COV2.S vaccination did not exacerbate respiratory disease in SARS-CoV-2-inoculated Syrian hamsters with breakthrough infection. In addition, dosing down the vaccine allowed to establish that binding and neutralizing antibody titers correlate with lower respiratory tract protection probability. Overall, these pre-clinical data confirm efficacy of a 1-dose vaccine regimen with Ad26.COV2.S in this G614 spike SARS-CoV-2 virus variant Syrian hamster model, show the added benefit of a second vaccine dose, and demonstrate that there are no signs of VAERD under conditions of suboptimal immunity.


Subject(s)
Respiratory Tract Diseases , Lung Diseases , Pneumonia , Breakthrough Pain , Respiratory Tract Infections , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.17.368258

ABSTRACT

The development of preventive corona virus disease (COVID)-19 vaccines is an urgent need, especially for the aging population that is most affected by the ongoing pandemic. The Janssen Ad26.COV2.S vaccine candidate is currently the only one evaluated as a single dose vaccination regimen in Phase 3 clinical studies. While the advantages of single dose vaccines, especially for use during a pandemic, are obvious, multiple doses may potentially improve magnitude and durability of immune responses. Here we assessed the immunogenicity of one- and two-dose Ad26.COV2.S vaccine regimens in adult and aged non-human primates (NHP). A second vaccine dose, administered 8 weeks post the first immunization, induced a significant increase in antigen-specific binding and neutralizing antibody responses in both adult and aged animals as compared to a single dose. In addition, in one-dose regimens neutralizing antibody responses were maintained for at least 14 weeks, providing an early indication of durable immune responses elicited by Ad26.COV2.S. Similar to what we showed previously in adult animals, Ad26.COV2.S vaccination of aged NHP induced a CD8+ T cell response and a Th1 skewed CD4+ T cell response. These data support the initiation of a two-dose Ad26.COV2.S regimen in a Phase 3 clinical trial in adults and elderly.


Subject(s)
COVID-19 , Virus Diseases
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.16.380899

ABSTRACT

Barn swallows that have crossed the sea from Southeast Asia usually appear in the Kyushu Region of Japan around March after passing through Okinawa Prefecture. When the climate becomes warmer, these birds then move further north, nesting and raising their chicks in various parts of Japan. It is worth noting that barn swallows typically nest on man-made objects, for example, the roofs of houses and barns. It is believed that this is because barn swallows protect their eggs and chicks from foreign enemies such as sparrows and crows so they build their nests in populated areas. The barn swallows behavior of using the presence of people to keep foreign enemies away shows that barn swallows are quite wise. However, it has been reported that from the spring to summer of 2020, barn swallows, nesting and raising their chicks, which were seen every year, were not found in various parts of Japan. Therefore, we investigated the relationship between peoples self-restraint from going out and the fledging of barn swallow chicks in Tokyo metropolitan during the corona virus disease 2019 (COVID-19) era. The results of the survey showed a link between peoples refraining from going out and the fledging of barn swallow chicks. Next spring of 2021, the termination of COVID-19 is an important environment for swallow chick fledging.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.30.227470

ABSTRACT

Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g. prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S1) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild type signal peptide was best suited for the correct cleavage needed for a natively-folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-{gamma}. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).


Subject(s)
COVID-19
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-45062.v1

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we developed two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens were displayed on AP205 CLPs through a novel split-protein Tag/Catcher ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD, and RBD displayed on CLPs bound the ACE2 receptor with nanomolar affinity. Mice were vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induced higher levels of serum anti-RBD antibodies, than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicited virus neutralization antibody titers comparable to those found in patients which had recovered from Covid-19. Following booster vaccinations, the virus neutralization titers exceeded those measured after natural infection, at serum dilutions above 1:10.000. Thus, the RBD-CLP vaccine is highly promising candidates for preventing COVID-19 disease.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.20.049924

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of nonstructural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (Remdesivir, Alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL